


#### **Seven Hills Lake Dam Presentation**



February 24, 2011

#### PRESENTATION OVERVIEW



- Regulatory Obligations
- Project Characteristics
- Investigations and Studies to Date
- Evaluation of Dam
- Evaluation of Low Level Outlet
- Evaluation of Spillway
- Budget Estimates for Remedial Measures



#### REGULATORY OBLIGATIONS

#### NYSDEC Part 673 : Dam Safety Regulations

| NYSDEC         | Regulation                                                                                                                | Timing                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 673.3 (a)      | Owner to operate dam in a safe condition                                                                                  | At all Times                                 |
| 673.6 (b) (i)  | Inspection and Maintenance Plan to include notifications of deficiencies                                                  | I&M Plan due on<br>Aug 19, 2010              |
| 673.8 (b)      | Owner to certify that current Inspection and Maintenance Plan is in place                                                 | By Jan 31,2011                               |
| 673.12 (d) (4) | Safety Inspection Report to include identification of deficiencies and schedule for corrective action (excluding studies) | As identified in I&M Plan (every four years) |
| 673.13 (f)     | Engineering Assessment to identify deficiencies and schedule for corrective action                                        | By Aug 19, 2015                              |

#### PROJECT CHARACTERISTICS





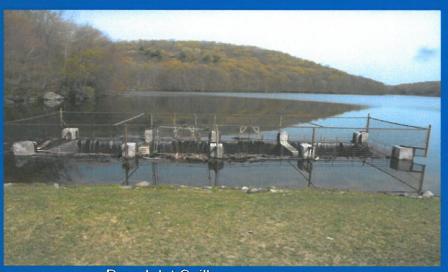
#### General



**Upstream View of Dam** 

Dam Height: 15 ft

Regulated under NYSDEC Part 673


Reservoir Volume: 115 MG

Hazard Classification: B

#### PROJECT CHARACTERISTICS



#### **Appurtenant Works**



#### Drop Inlet Spillway



Twin Box Culverts

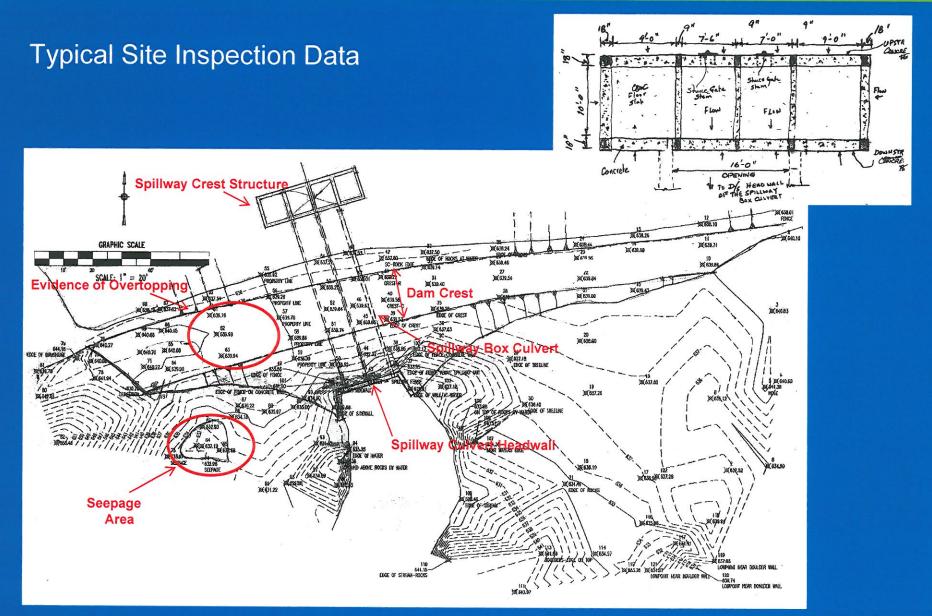
#### Spillway

- Drop Inlet Type
- Effective Crest Length: 85 ft
- Twin box culverts, each 5 feet by 8 feet

#### **Low Level Outlet**

• 2 No. 24" Sluice Gates

#### **INVESTIGATIONS AND ANALYSES**

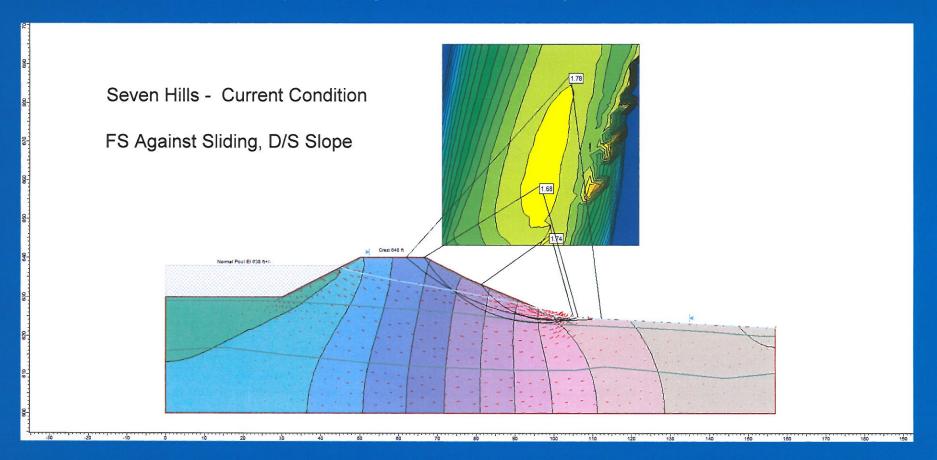



#### Studies to Date

- Site inspections to observe project condition
- Hydrology studies to determine design floods
- · Hydraulic studies to determine capacities of spillway and low level outlet
- Dam break studies to confirm hazard classification
- Conceptual options for remedial work
- Stability analysis for existing condition and remedial work options

#### **INVESTIGATIONS AND ANALYSES**










#### **Evaluation**

- Generally dam is in good condition
- Dam is stable Steady Seepage Factor of Safety = 1.68



#### **EVALUATION OF DAM**





#### Issues



Indications of overtopping at right of spillway



Erosion at spillway culvert outlet walls

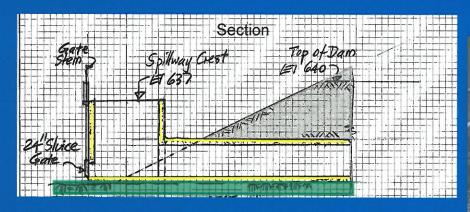


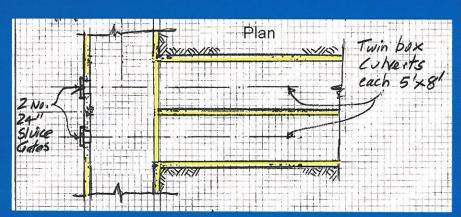
Seepage near right abutment





#### Remedial Measures


| Issue                                | Proposed Remedial Work                                                |
|--------------------------------------|-----------------------------------------------------------------------|
| Overtopping of dam                   | Increase spillway capacity (see later)                                |
| Seepage at downstream toe of dam     | For minor foundation seepage: -Place filter material at seepage areas |
|                                      | For seepage through dam: -Reconstruct dam section                     |
| Erosion at Spillway Culvert Headwall | Place rip-rap at eroded areas                                         |


#### **EVALUATION OF LOW LEVEL OUTLET**





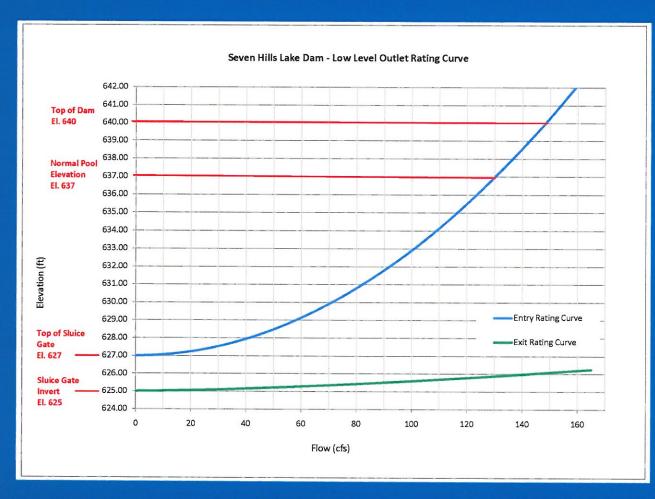
#### **Outlet Facilities**





#### 2 No. 24" sluice gates



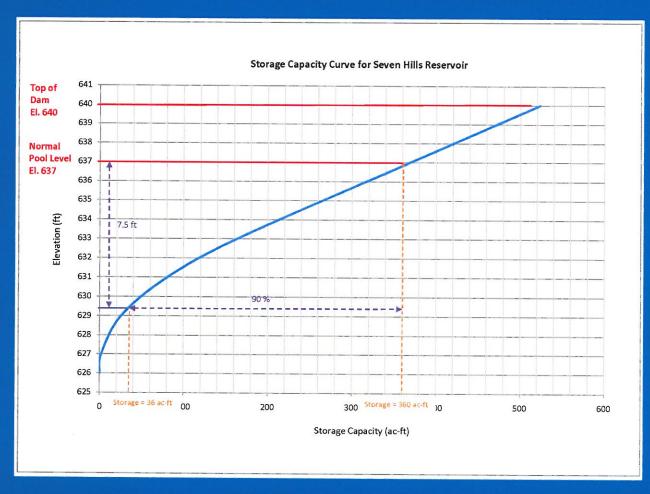

Note misaligned gate stem







#### **Discharge Capacity**




Capacity at Normal Pool = 130 cfs

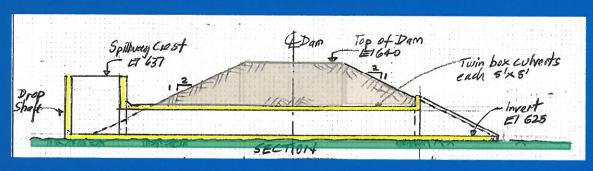




#### Ability to Draw Down Reservoir



Both outlets can draw down reservoir in 2 days


#### **EVALUATION OF LOW-LEVEL OUTLET**



- Issues
  - Condition of gates unknown
  - Operating stem out of alignment
- Remedial Measures
  - Replace gates, including stems and lifting frames
  - This will require emptying the reservoir



#### **Existing Works**



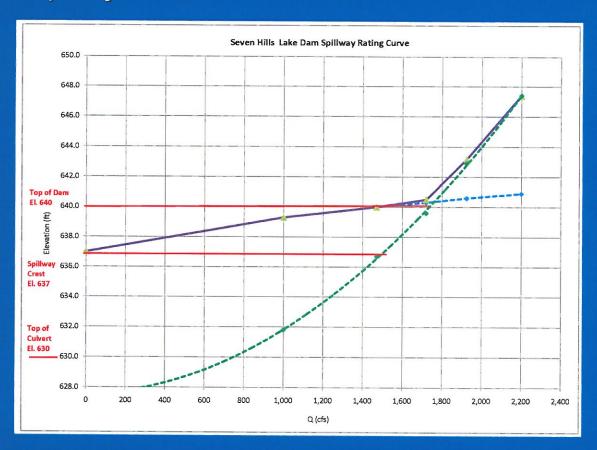
# Top of Dann Wing Walk Head Walk On the Community of the

#### Crest structure

- Rectangular box structure
- Effective Crest Length = 85 feet
- Crest Level = El 637

#### **Drop Inlet**

Rectangular shaft


#### Culvert beneath Dam

- Twin box culverts each 5 feet by 8 feet
- Invert Level = El 625





#### Capacity



#### **Crest Control**

- $Q = CLH_{cr}^{(3/2)}$
- C= 3.5

#### **Culvert Control**

• 
$$Q = KH_{cu}^{(1/2)}$$



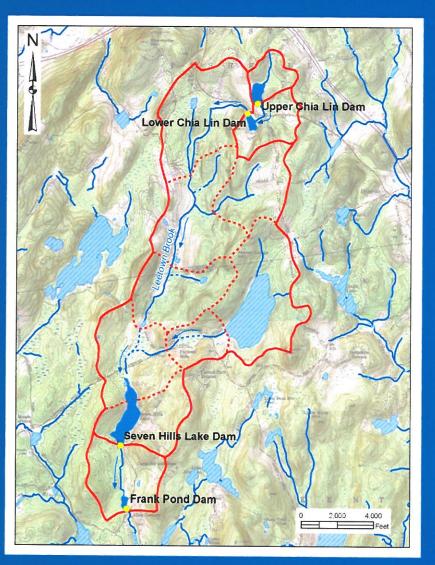
#### Required Capacity

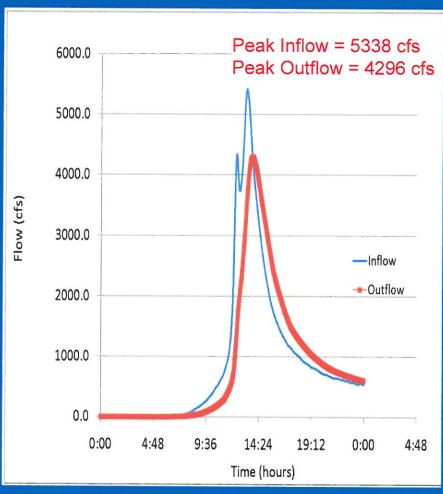
#### 5.3 Existing Dams - Design Flood

Existing dams that are being rehabilitated should have adequate spillway capacity to pass the following floods without overtopping:

| Hazard Classificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Spillwav D | esign Flood (SDF) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| The second secon |              |                   |

| A | 100 year         |
|---|------------------|
| В | 150% of 100 year |
| C | 50% of PMF       |


The Service Spillway Design Flood (SSDF) for existing dams is the same as shown for the new dams on Table 1.


New York State Requirements - NYSDEC Guidelines for Design of Dams 1989

#### **EVALUATION OF DESIGN FLOOD**



#### 100 - yr Flood

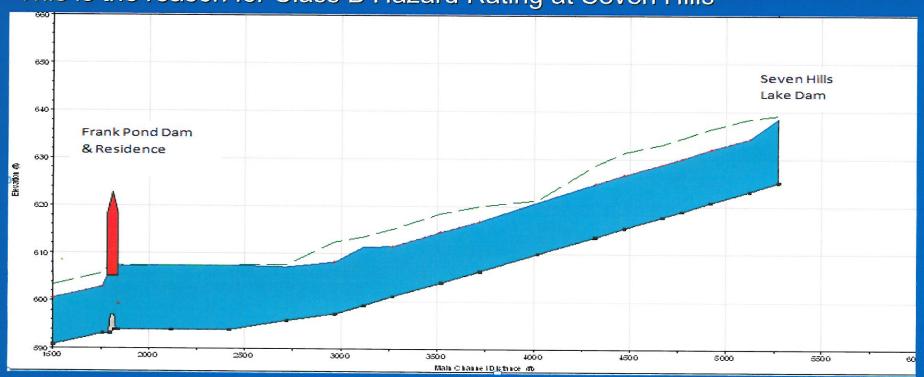








#### Other Return Period Floods


| Flood       | Peak Inflow<br>(cfs) | Peak Outflow<br>(cfs) | Max. Res.<br>Level (ft) |
|-------------|----------------------|-----------------------|-------------------------|
| 10 yr       | 1,970                | 1,410                 | El 639.9                |
| 25 yr       | 3,110                | 2,270                 | El 640.9                |
| 50 yr       | 4,270                | 3,220                 | El 641.7                |
| 100 yr      | 5,340                | 4,300                 | El 642.5                |
| 150% 100 yr | 8,130                | 6,770                 | El 644.0                |



#### Impact of Dam Overtopping

- Dam collapse for high overflow
- Large flood wave passes down valley
- Threat to house(s) downstream, particularly at Frank Pond Dam downstream

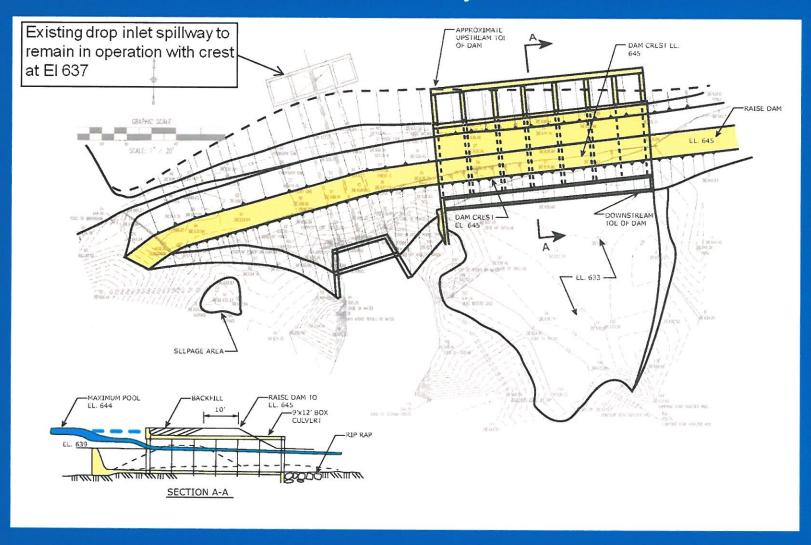
#### This is the reason for Class B Hazard Rating at Seven Hills



Downstream Effects of 25-Yr Flood Dam Break at Seven Hills Lake Dam

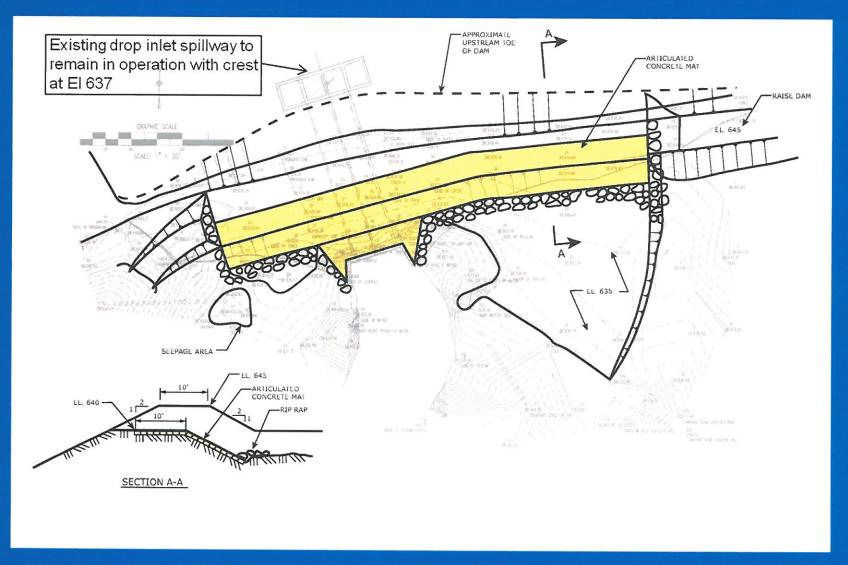


#### Remedial Options


- Raise dam
  - Maximum raise possible = 5 feet
  - Spillway capacity increase to 2000 cfs
  - Improves but not solves deficiency

- Raise dam and replace existing spillway
  - Need to triple the conduit area
  - Much of dam fill would need to be excavated and subsequently replaced
  - Very high cost

- Raise dam and add auxiliary box culverts
  - Promising option, referred to as Option 1
- Raise dam and add articulated concrete mat
  - Promising option, referred to as Option 2


## OPTIONS TO INCREASE SPILLWAY CAPACITY A ECOM

#### Option 1- Raise Dam and Add Auxiliary Box Culverts



### OPTIONS TO INCREASE SPILLWAY CAPACITY AECOM

#### Option 2 – Raise Dam and Add Articulated Concrete Mat



- Dam Seepage Area
   For minor foundation
  - For minor foundation seepage-----\$11,600
  - For reconstruction of dam section-----\$73,300
- Low Level Outlet
  - Replace Gates-----\$53,300
- Increase Spillway Capacity
  - Option 1 (Auxiliary Box Culverts)-----\$3,085,700
  - Option 2 (Articulated Concrete Mat)-----\$787,700

#### Dam Seepage Area – Minor Foundation Seepage

|                                              |          |                                            |              | To | tal Direct |
|----------------------------------------------|----------|--------------------------------------------|--------------|----|------------|
| Item Description                             | Quantity | Unit                                       | Unit Price   |    | Cost       |
| Direct Costs                                 |          |                                            |              |    |            |
| Excavation (including haul to disposal area) | 0        | CY                                         | \$ 80.00     | \$ | -          |
| Fill Placement (including borrow and haul)   | 0        | CY                                         | \$ 80.00     | \$ | -          |
| Filter Material (crushed stone)              | 20       | CY                                         | \$ 200.00    | \$ | 4,000      |
| Filter Material (geotextile and geogrid)     | 400      | SF                                         | \$ 2.00      | \$ | 800        |
|                                              |          | Total                                      | Direct Cost: | \$ | 4,800      |
|                                              |          | - 108                                      |              |    | •          |
| Indirect Project Costs:                      | 120      | 0.000                                      |              |    |            |
| Mobilization/Demobilization                  |          | 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0%           | \$ | -          |
| General Conditions                           |          |                                            | 0%           | \$ | -          |
|                                              |          | Total In                                   | direct Cost: | \$ | -          |
|                                              |          |                                            |              |    |            |
| Add-Ons:                                     |          | 0 100                                      |              |    |            |
| Miscellaneous Items                          |          | 20 20 20 20 20 20 20 20 20 20 20 20 20 2   | 10%          | \$ | 480        |
|                                              |          |                                            |              |    |            |
| Contractor Markup (OH&P)                     |          |                                            | 21%          | \$ | 1,109      |
| Contractor Bonds/Insurance                   |          |                                            | 10%          | \$ | 639        |
| Project Contingency                          |          |                                            | 50%          | \$ | 3,514      |
|                                              |          |                                            |              |    |            |
|                                              |          | Total Const                                | ruction Cost | \$ | 10,542     |
|                                              |          | **************************************     |              |    |            |
| Engineering Services                         |          |                                            | 10%          | \$ | 1,054      |
|                                              |          |                                            |              |    |            |
|                                              |          |                                            | TOTAL        | \$ | 11,596     |

#### Dam Seepage Area – Reconstruction of Dam Section

|                                              |          |             |              | То | tal Direct |
|----------------------------------------------|----------|-------------|--------------|----|------------|
| Item Description                             | Quantity | Unit        | Unit Price   |    | Cost       |
| Direct Costs                                 |          |             |              |    |            |
| Excavation (including haul to disposal area) | 150      | CY          | \$ 80.00     | \$ | 12,000     |
| Fill Placement (including borrow and haul)   | 150      | CY          | \$ 80.00     | \$ | 12,000     |
| Filter Material (crushed stone)              | 0        | CY          | \$ 200.00    | \$ | -          |
| Filter Material (geotextile and geogrid)     | 0        | SF          | \$ 2.00      | \$ | -          |
|                                              |          | Total       | Direct Cost: | \$ | 24,000     |
|                                              |          |             |              |    |            |
| Indirect Project Costs:                      |          | A LAM       | 200          |    |            |
| Mobilization/Demobilization                  |          |             | 10%          | \$ | 2,400      |
| General Conditions                           |          |             | 15%          | \$ | 3,960      |
|                                              |          | Total Ir    | direct Cost: | \$ | 6,360      |
|                                              |          |             |              |    |            |
| Add-Ons:                                     |          |             |              |    |            |
| Miscellaneous Items                          |          |             | 10%          | \$ | 3,036      |
|                                              |          | 10 300      |              |    |            |
| Contractor Markup (OH&P)                     |          |             | 21%          | \$ | 7,013      |
| Contractor Bonds/Insurance                   |          |             | 10%          | \$ | 4,041      |
| Project Contingency                          |          |             | 50%          | \$ | 22,225     |
|                                              |          |             |              |    |            |
|                                              |          | Total Const | ruction Cost | \$ | 66,675     |
|                                              |          |             |              |    |            |
| Engineering Services                         |          |             | 10%          | \$ | 6,668      |
|                                              |          | ****        |              |    |            |
|                                              |          |             | TOTAL        | \$ | 73,343     |

#### Low Level Outlet – Replace Gates

|                                            |          |           |       |                 | Tot | tal Direct                              |
|--------------------------------------------|----------|-----------|-------|-----------------|-----|-----------------------------------------|
| Item Description                           | Quantity | Unit      | U     | Jnit Price Cost |     | Cost                                    |
| Direct Costs                               |          |           |       |                 |     |                                         |
| Dewatering and Maintaining Reservoir Level | 1        | LS        | \$    | 5,000.00        | \$  | 5,000                                   |
| Removal of Existing Two Sluice Gates       |          |           |       |                 |     | *************************************** |
| Laborer (Crew of 2 x 1 week)               | 80       | MH        | \$    | 65.00           | \$  | 5,200                                   |
| Supply New Sluice Gates                    | 2        | EA        | \$    | 5,000.00        | \$  | 10,000                                  |
| Installation of Two New Sluice Gates       |          |           |       |                 |     |                                         |
| Laborer (Crew of 2 x 1 week)               | 80       | MH        | \$    | 65.00           | \$  | 5,200                                   |
|                                            |          | Tot       | al Di | rect Cost:      | \$  | 25,400                                  |
|                                            |          |           |       |                 |     |                                         |
| Indirect Project Costs:                    |          |           |       |                 |     |                                         |
| Mobilization/Demobilization                |          |           |       | 5%              | \$  | 1,270                                   |
| General Conditions                         |          |           |       | 0%              | \$  | -                                       |
|                                            |          | Total     | Indi  | rect Cost:      | \$  | 1,270                                   |
|                                            |          |           |       |                 |     |                                         |
| Add-Ons:                                   |          |           |       |                 |     |                                         |
| Miscellaneous Items                        |          |           |       | 5%              | \$  | 1,334                                   |
|                                            |          |           |       |                 |     |                                         |
| Contractor Markup (OH&P)                   | 1000     |           |       | 21%             | \$  | 5,881                                   |
| Contractor Bonds/Insurance                 |          |           |       | 10%             | \$  | 3,388                                   |
| Project Contingency                        |          |           |       | 30%             | \$  | 11,182                                  |
|                                            |          |           |       |                 |     |                                         |
|                                            |          | Total Cor | stru  | ction Cost      | \$  | 48,454                                  |
|                                            |          |           |       |                 |     |                                         |
| Engineering Services                       |          |           |       | 10%             | \$  | 4,845                                   |
|                                            |          |           |       |                 |     |                                         |
|                                            |          | 0.0       |       | TOTAL           | \$  | 53,300                                  |
|                                            |          |           |       | Water Control   |     |                                         |

#### Increase Spillway Capacity - Option 1

|                                                                    | _         |                    |               | т-   | tal Direct |
|--------------------------------------------------------------------|-----------|--------------------|---------------|------|------------|
| Item Description                                                   | Quantity  | Unit               | Unit Price    |      |            |
| Direct Costs                                                       | Qualitity | Onit               | Onit Price    |      | Cost       |
| Excavation (including haul to disposal area)                       | 800       | CY                 | \$ 80.00      | \$   | 64,000     |
| Fill Placement (including borrow and haul)                         | 2400      | CY                 | \$ 80.00      | \$   |            |
| Rip-rap Protection                                                 | 275       | CY                 | \$ 150.00     | \$   | 192,000    |
| Cast-in-Place Reinforced Concrete                                  | 475       | CY                 | -             | \$   | 41,250     |
| Surface Preparation                                                | 4/3       | SF                 | \$1,500.00    | \$   | 712,500    |
| Filter Material (crushed stone)                                    |           |                    | T             | _    |            |
|                                                                    | 0         | CY                 | -             | \$   | -          |
| Filter Material (geotextile and geogrid)  Articulated Concrete Mat | 0         | SF                 | \$ 2.00       | \$   |            |
| Articulated Concrete Mat                                           | 0         | SF                 | \$ 15.00      | \$   | -          |
|                                                                    |           | lotal              | Direct Cost:  | Ş    | 1,009,750  |
| Indirect Project Costs                                             |           |                    |               |      |            |
| Indirect Project Costs:                                            |           | form of the second |               |      |            |
| Mobilization/Demobilization                                        |           |                    | 10%           | -    | 100,975    |
| General Conditions                                                 |           |                    | 15%           |      | 166,609    |
|                                                                    |           | Total Ir           | ndirect Cost: | \$   | 267,584    |
| 1110                                                               |           |                    |               |      |            |
| Add-Ons:                                                           |           |                    |               |      |            |
| Miscellaneous Items                                                |           |                    | 10%           | \$   | 127,733    |
|                                                                    |           | -                  |               |      |            |
| Contractor Markup (OH&P)                                           |           | -                  | 21%           | -    | 295,064    |
| Contractor Bonds/Insurance                                         |           |                    | 10%           | \$   | 170,013    |
| Project Contingency                                                | -101      |                    | 50%           | \$   | 935,072    |
|                                                                    |           |                    |               |      |            |
|                                                                    |           | Total Const        | truction Cost | \$ : | 2,805,217  |
|                                                                    |           |                    |               |      |            |
| Engineering Services                                               |           |                    | 10%           | \$   | 280,522    |
|                                                                    |           |                    |               |      |            |
|                                                                    |           |                    | TOTAL         | \$   | 3,085,738  |

#### Increase Spillway Capacity – Option 2

|                                              |                             |             |              | Tot | tal Direct |
|----------------------------------------------|-----------------------------|-------------|--------------|-----|------------|
| Item Description                             | Quantity                    | Unit        | Unit Price   |     | Cost       |
| Direct Costs                                 |                             |             |              |     |            |
| Excavation (including haul to disposal area) | 250                         | CY          | \$ 80.00     | \$  | 20,000     |
| Fill Placement (including borrow and haul)   | 250                         | CY          | \$ 80.00     | \$  | 20,000     |
| Rip-rap Protection                           | 375                         | CY          | \$ 150.00    | \$  | 56,250     |
| Cast-in-Place Reinforced Concrete            | 0                           | CY          | \$1,500.00   | \$  | -          |
| Surface Preparation                          | 4500                        | SF          | \$ 10.00     | \$  | 45,000     |
| Filter Material (crushed stone)              | 200                         | CY          | \$ 200.00    | \$  | 40,000     |
| Filter Material (geotextile and geogrid)     | 4500                        | SF          | \$ 2.00      | \$  | 9,000      |
| Articulated Concrete Mat                     | 4500                        | SF          | \$ 15.00     | \$  | 67,500     |
|                                              |                             | Total       | Direct Cost: | \$  | 257,750    |
|                                              |                             |             |              |     |            |
| Indirect Project Costs:                      |                             |             |              |     |            |
| Mobilization/Demobilization                  |                             |             | 10%          | \$  | 25,775     |
| General Conditions                           | VI - 1500-01 - F 100 - 1000 |             | 15%          | \$  | 42,529     |
|                                              |                             | Total In    | direct Cost: | \$  | 68,304     |
|                                              |                             |             |              |     |            |
| Add-Ons:                                     |                             |             |              |     |            |
| Miscellaneous Items                          |                             |             | 10%          | \$  | 32,605     |
|                                              |                             |             |              |     |            |
| Contractor Markup (OH&P)                     | 95 94 94 94                 |             | 21%          | \$  | 75,318     |
| Contractor Bonds/Insurance                   |                             |             | 10%          | \$  | 43,398     |
| Project Contingency                          |                             |             | 50%          | \$  | 238,688    |
|                                              |                             |             |              |     |            |
|                                              |                             | Total Const | ruction Cost | \$  | 716,063    |
|                                              |                             |             |              |     |            |
| Engineering Services                         | 300000                      |             | 10%          | \$  | 71,606     |
|                                              |                             |             |              |     |            |
|                                              |                             |             | TOTAL        | \$  | 787,669    |
|                                              |                             |             |              |     |            |





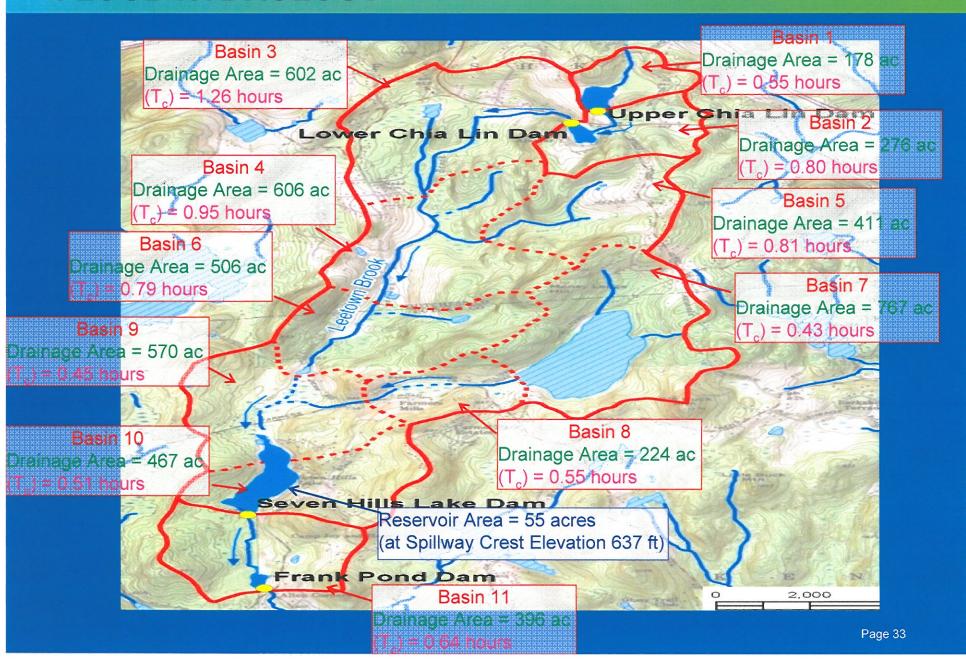
#### **APPENDIX**



#### **Additional Topics**

- Flood Hydrology
- Hydraulics
- Dam Break
- Stability Analysis




#### Critical Hydrologic Parameters

- Drainage Area
  - Time of Concentration (T<sub>c</sub>)
  - Lag Time (T<sub>L</sub>)
    - Lag Time =  $T_c/1.67$

- Rainfall
  - Rainfall distribution curves obtained from Cornell website (<a href="http://precip.eas.cornell.edu/">http://precip.eas.cornell.edu/</a>)

- Reservoir Development
  - Spillway Rating Curve
  - Reservoir Capacity Curve
- Losses
  - Initial Abstraction (l<sub>a</sub>)
    - Accounts for surface wetting of vegetation and filling of depressions
    - $I_a = 0.2*[(1000/CN)-10]$
  - CN
    - Runoff Curve Number
    - Based on soil characteristics



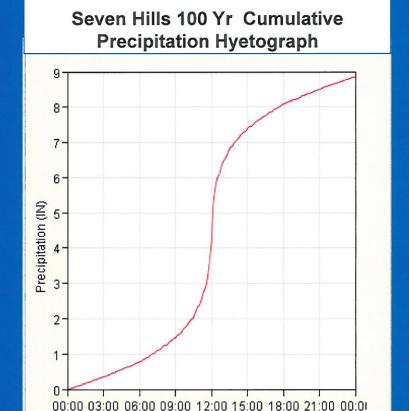






#### Seven Hills Basin 10: CN and Initial Abstraction



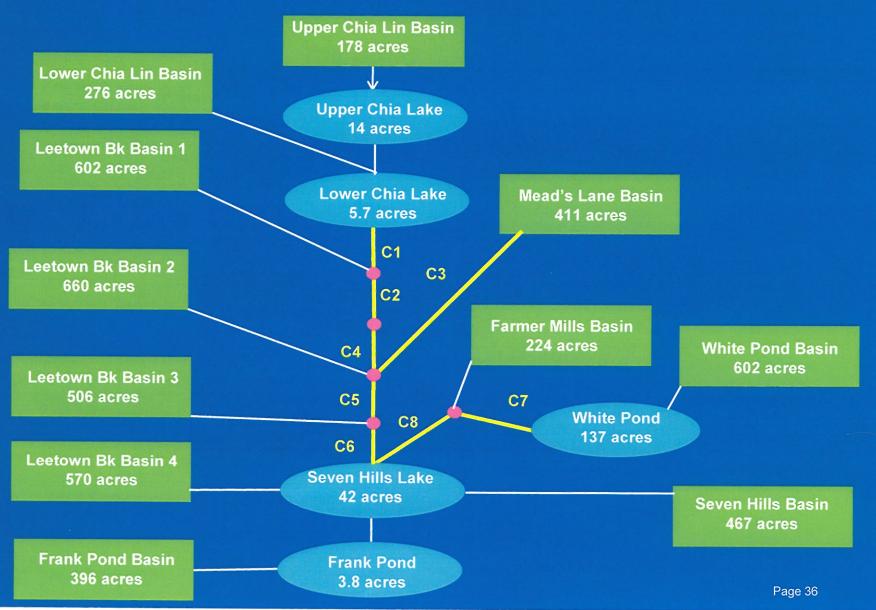

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

| 1. Runoff curve nu                  | ımber                                                                                                              |           |            |            |                                  |               |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|----------------------------------|---------------|--|
| Soil name<br>and                    | and                                                                                                                |           | CN 1/      |            |                                  | Product<br>of |  |
| hydrologic<br>group<br>(appendix A) | (cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio) | Table 2-2 | Figure 2-3 | Figure 2-4 | □acres<br>□mi <sup>2</sup><br>□% | CN x area     |  |
| Charlton, B                         | Brush, poor condition                                                                                              | 67        |            |            | 148                              | 9,880         |  |
| Chatfield, B                        | Brush, poor condition                                                                                              | 67        |            |            | 103                              | 6,891         |  |
| Muck/loam, D                        | Brush, poor condition                                                                                              | 83        |            |            | 9                                | 741           |  |
| Hollis/Chatfield, C                 | Brush, poor condition                                                                                              | 77        |            |            | 157                              | 12,078        |  |
| Leicester/<br>Udothents, C          | Brush, poor condition                                                                                              | 77        |            |            | 9                                | 9,880         |  |
| Reservoir                           | Water                                                                                                              | 100       |            |            | 42                               | 4,200         |  |
| 1/ 1/                               |                                                                                                                    |           |            |            |                                  |               |  |
| 1/ Use only one CN source           | per line                                                                                                           | 1         | fotal      | s 🖈        | 467                              | 34,475        |  |
| CN (weighted) = total p             | product = 34,475 = 74 ;                                                                                            | Use       | CN         | •          | 74                               |               |  |



#### Seven Hills Dam: Rainfall

- Source
  - NYSDEC Recommendation
    - http://precip.eas.cornell.edu/
    - Provides current data about extreme precipitation events for New York and New England
- Data obtained
  - Dimensionless Accumulation Data for 100 Yr 24 Hour Storm
  - Total Cumulative Precipitation for 24
     Hour 100 Year Storm = 8.76 inches
  - Procedure
  - Develop Hyetograph using HEC-HMS

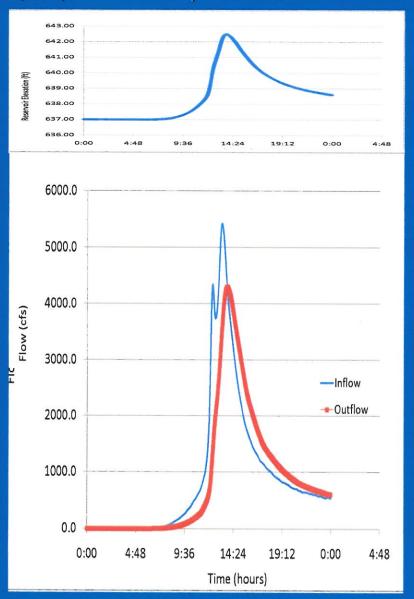



01Jan2000





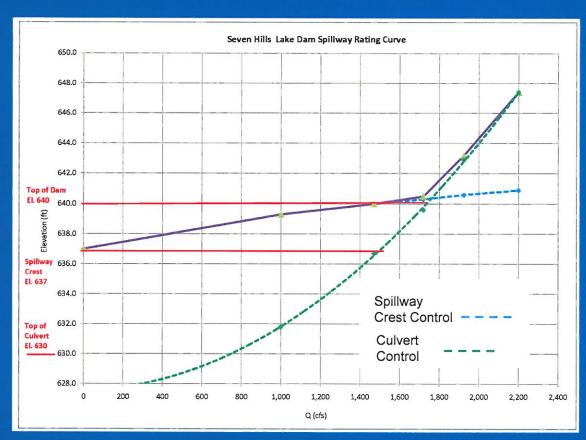
#### Seven Hills HEC-HMS Catchment Model








# FLOOD HYDROLOGY


# 100 Yr Hydrograph (HEC-HMS)



#### HYDRAULICS

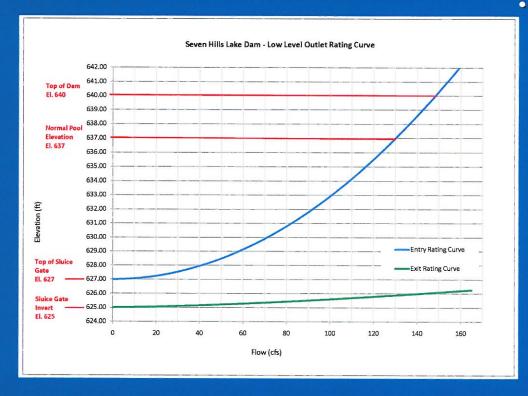


#### Spillway Rating Curve



#### Spillway

- Basic Spillway Assumptions
  - Total Length = 85 ft
  - 18 inch thick wall, represented as a sharp crested weir (C=3.33)
  - Height = 10 ft
  - Q=CLH<sup>(3/2)</sup>


#### Discharge

- Spillway discharges into twin concrete culverts
- Head loss in the culverts will eventually become larger than the vertical height of the shaft and the crest will become submerged
- The twin culvert would eventually become the hydraulic control

### **HYDRAULICS**



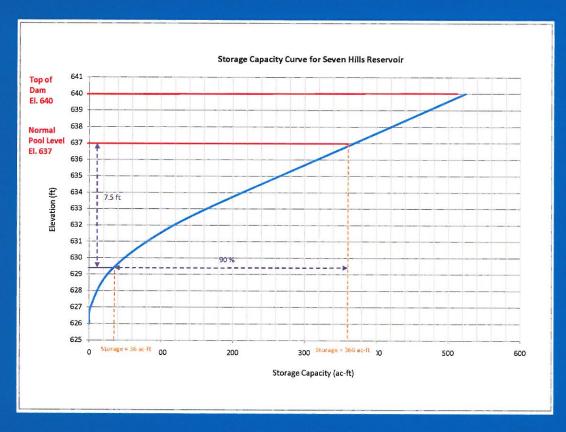
### Low Level Outlet Rating Curve



#### Low Level Outlet

- Basic Assumptions
  - Diameter = 24 inches
  - L= 18 ft
  - n = 0.013
- $-H = H_{L \text{ entrance}} + H_{L \text{ exit}} + H_{L \text{ valve}} + H_{L \text{ friction}}$
- Coefficients
  - $K_{L \text{ entrance}} = 0.25$
  - K<sub>L exit=</sub> 1.00
  - K<sub>L valve =</sub> 0.20

#### Conclusions


 Low Level Outlet can draw down reservoir in approximately 2 days





# **EVALUATION OF LOW LEVEL OUTLET**

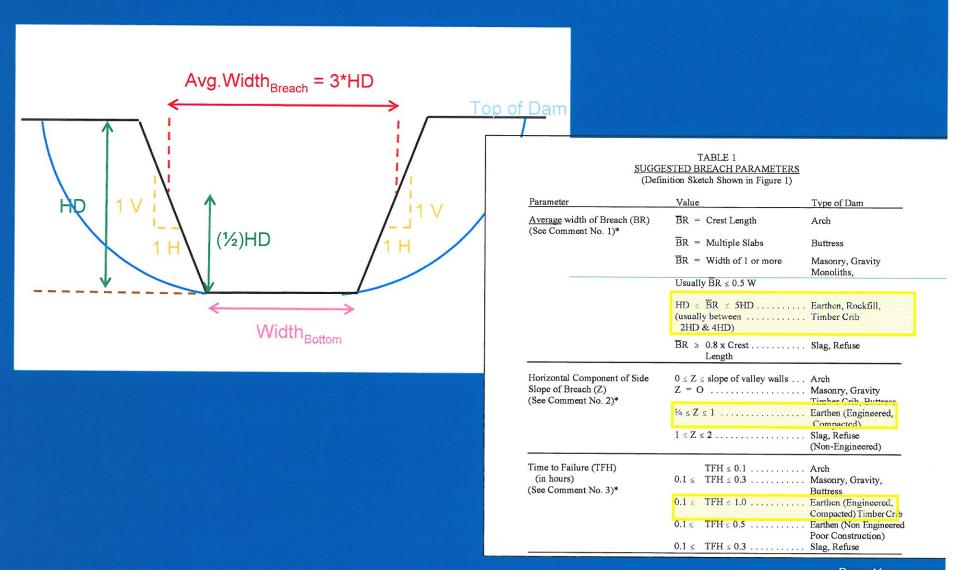
#### Ability to Drawdown Reservoir



#### Requirements

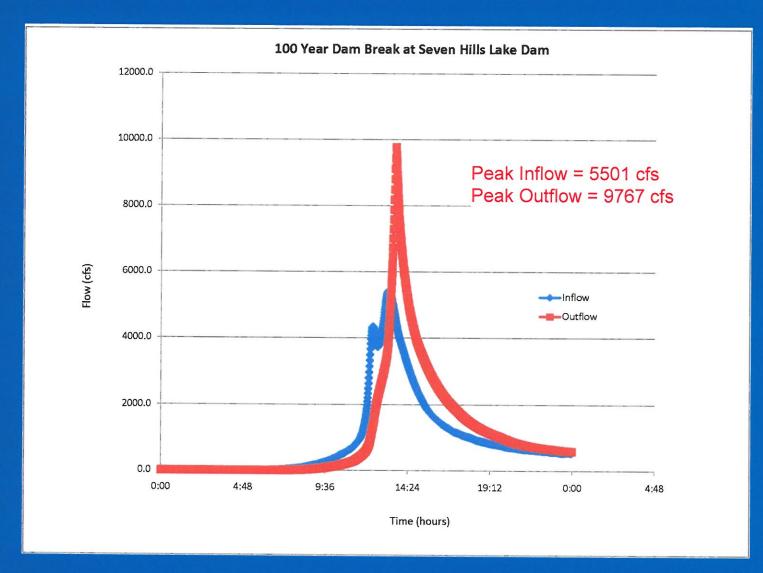
90% of the reservoir must be drawdown in 14 days

#### Reservoir Drawdown


- 90% of the total volume is equal to a drawdown of approximately 7.5 feet
- Required drawdown rate =7.5 ft/14 days = 0.5 ft/day

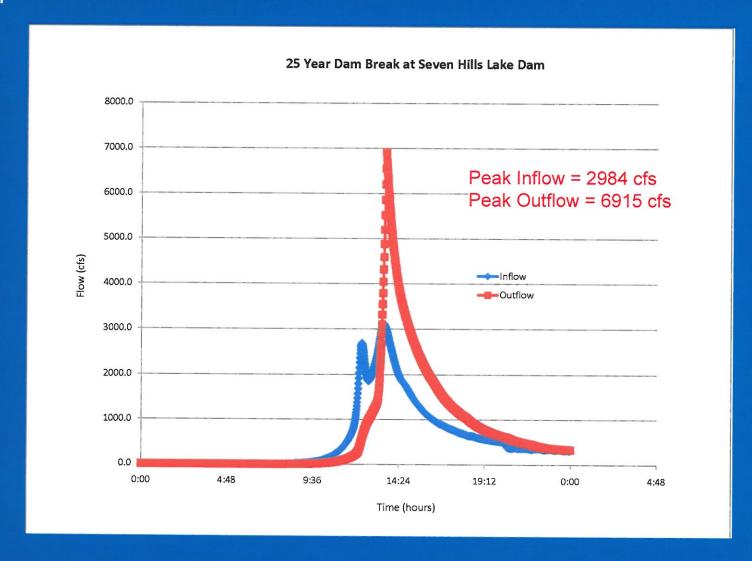
#### Capability

 The low level outlet can draw the reservoir down completely in 2 days.




#### Breach Formation Parameters – FERC Engineering Guides






### • 100 Yr





#### • 25 Yr





#### Impact of Dam Break at Seven Hills on Frank Pond Dam

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frank Pond Dam<br>Spillway Crest El 597<br>Top of Dam El 604 |                  |                      | Frank Pond Dam during Dam Break at<br>Seven Hills Lake Dam |                  |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|----------------------|------------------------------------------------------------|------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inflow (cfs)                                                 | Outflow<br>(cfs) | Maximum Res<br>Elev. | Inflow<br>(cfs)                                            | Outflow<br>(cfs) | Maximum<br>Res Elev. |
| Sunny Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | Service .        |                      | 2.452                                                      | 2.614            | 604.07               |
| ELECTRONIC CONTRACTOR OF THE PARTY OF THE PA | -                                                            | -                |                      | 3,453                                                      | 2,614            | 604.87               |
| 2-yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 604                                                          | 594              | 601.16               | -                                                          | -                |                      |
| 10-yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,465                                                        | 1,431            | 603.49               | -                                                          | _                | -                    |
| 25-yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,365                                                        | 2,349            | 604.63               | 6,743                                                      | 5,954            | 607.26               |
| 50-yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,360                                                        | 3,334            | 605.46               |                                                            |                  |                      |
| 100-yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,499                                                        | 4,462            | 606.29               | 9,589                                                      | 8,705            | 608.77               |

#### Major Consequences

- Sunny Day Dam Break minor (0.9 ft) overtopping of Frank Pond Dam
- 25yr Flood minor (0.6 ft) overtopping of Frank Pond Dam
- 25 yr Flood with Dam Break at Seven Hills severe (3.3 ft) over topping of Frank Pond Dam
- •100yr Flood 2.3 ft overtopping of Frank Pond Dam
- 100 yr Flood with Dam Break at Seven Hills severe (4.8 ft) overtopping of Frank Pond Dam



### Approach & Guidelines

- Embankment Dams
  - USACE Code

EM-1110-2-1902, January 1989. 'Stability of Earth and Rockfill Dams'

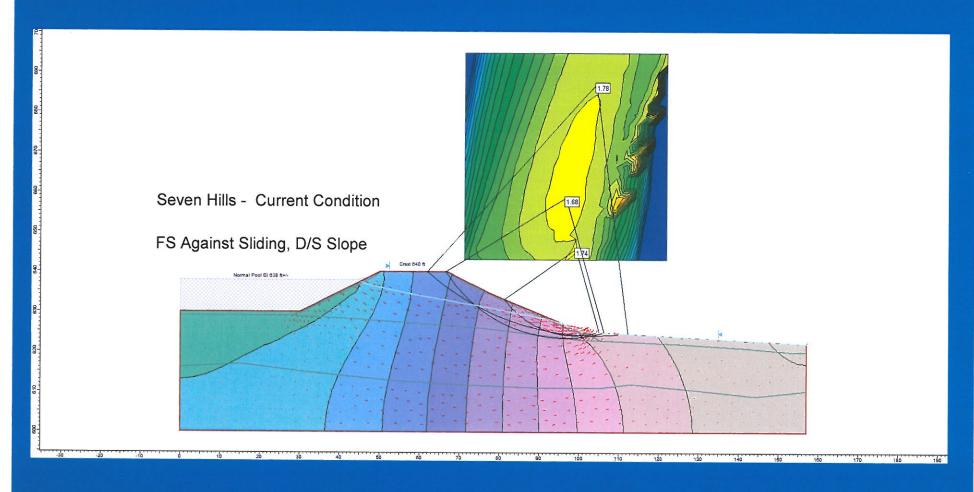
- Loading Cases & Factors of Safety

|     |                                                      | the same of the sa |
|-----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| II  | Sudden drawdown from maximum pool                    | 1.0‡‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| III | Sudden drawdown from spillway crest or top of gates  | 1.2‡‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IV  | Partial pool with steady seepage                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| v   | Steady seepage with maximum storage pool             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VI  | Steady seepage with surcharge pool                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VII | Earthquake (Cases I, IV, and V with seismic loading) | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

- Software

Slide v. 6.005 (July 2010) & Phase2 v. 7.016 by Rocscience, Toronto

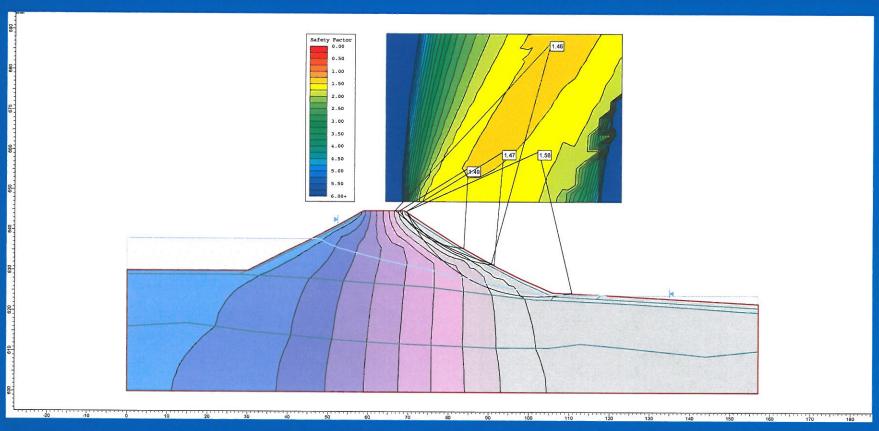



## Assumptions made in the Stability Analyses:

- 1. Geometry of dams, et cetera was taken from AECOM inspection reports and other on file data
- 2. Local geology and subsurface conditions were assumed based on personal observations of the dam sites and available local surface geology maps and data
- 3. Shear strength parameters of all formations and fill materials were assumed and consistent with dam construction practice and most likely available borrow materials
- 4. Foundation, fill and sediment permeabilities were assumed based on experience elsewhere
- 5. No particular weakness/failure plane was assumed exists in the foundation of any of the dams analyzed. No preexisting shear zones/surfaces were assumed existed in the local rock formation
- 6. No foundation and/or fill dispersive and piping potential was assumed to exist
- 7. Reasonable boundary conditions were assumed and introduced in the models consistent with these type of analyses and based on experience on similar projects elsewhere
- 8. FEA ground water and seepage analyses, a basis to stability, were based on hydrologic input data and reasonable boundary condition assumptions





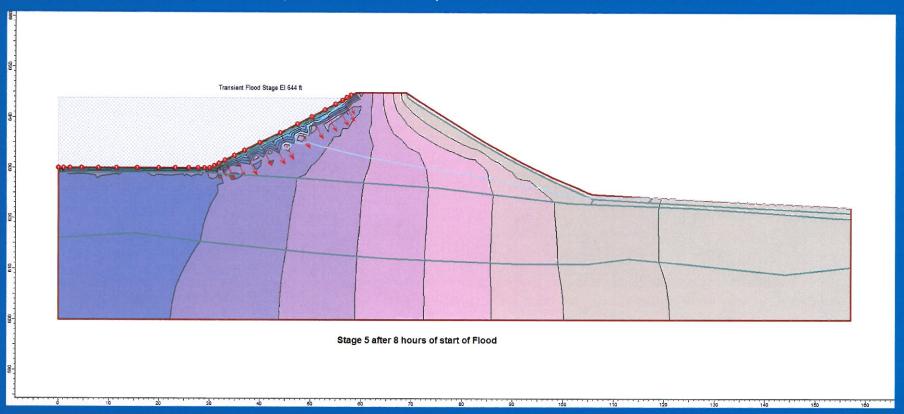

# **Existing condition**







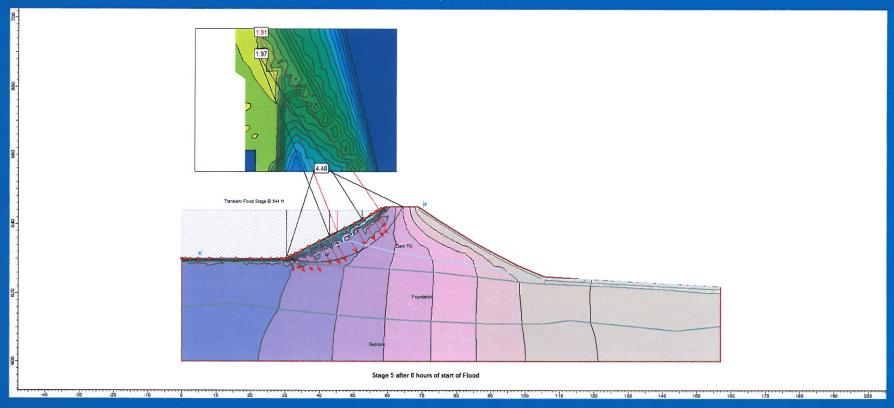
## Seven Hills - Option 1 (Raised Dam to El 645 ft )




Downstream Slope Stability Raised Dam Option with Crest Elevation at 645 ft. Steady State Normal Pool at El 638 ft



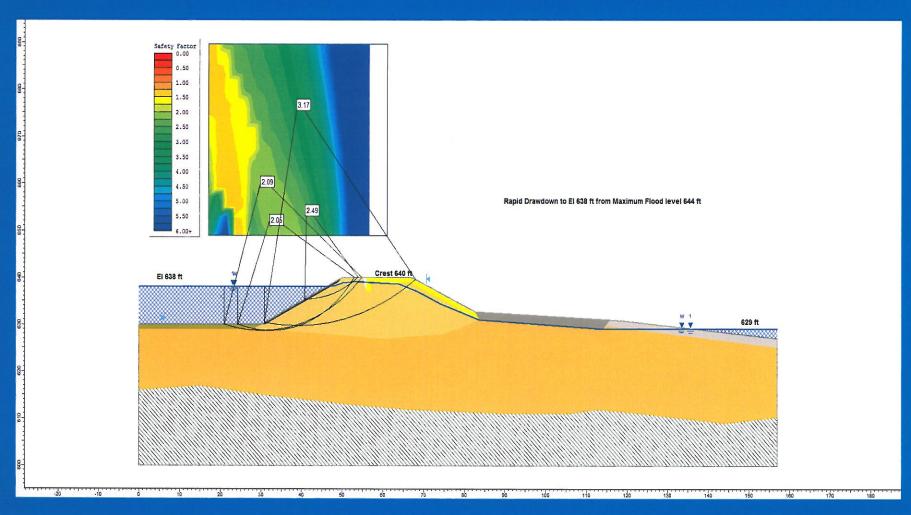



# Seven Hills - Option 1 (Raised Dam)



Seepage Transient - Flood Stage to El 644, 150% in 100-year



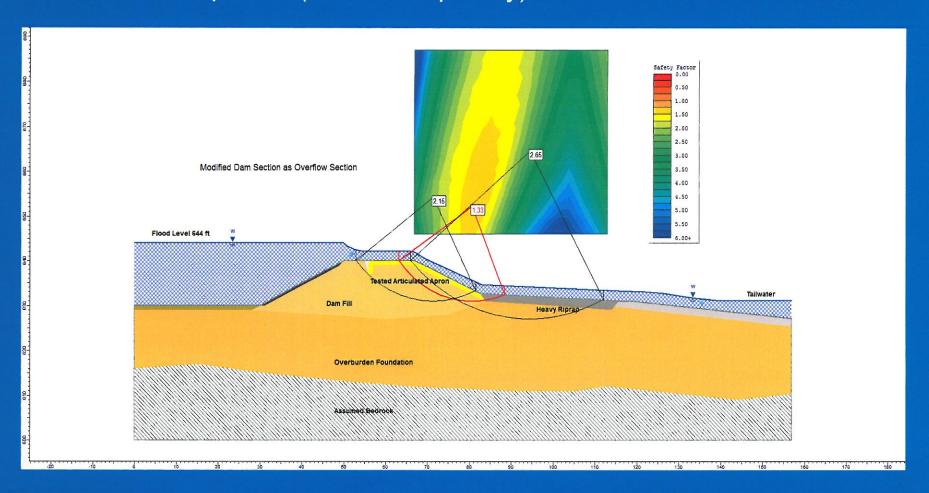

# Seven Hills - Option 1 (Raised Dam)



Upstream Stability Flood Stage to El 644, Transient Seepage, 150% in 100-year

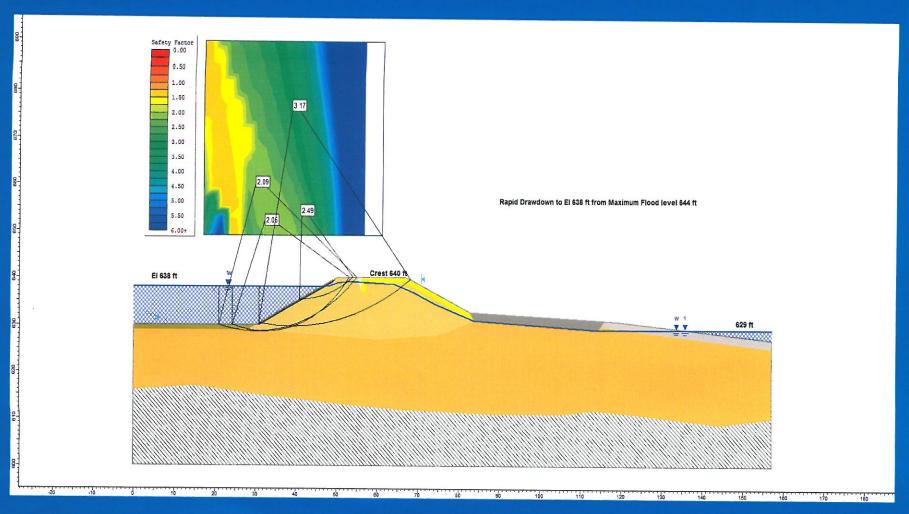


## Seven Hills - Option 2 (Overflow Spillway)




Upstream Stability after Rapid Drawdown






# Seven Hills - Option 2 (Overflow Spillway)





# Seven Hills - Option 2 (Overflow Spillway)



Upstream Stability after Rapid Drawdown